第三届LS-DYNA中国论坛

2018年10月26日 上海

Livermore Software Technology Corporation

上海仿坤软件科技有限公司(LS-DYNA 中国)

Application of LS-DYNA in safety product developing

Autoliv CTC in Sep 19th,2018

HIRIDI

Contents

- Autoliv
- Safety product
- Strength
- Airbag deployment
- Fatigue
- Acoustic

Autoliv – 65 years of Dedication to Saving Lives

3 October 27, 2018 Application of LS-DYAN in safety product developing

Autoliv

October 27, 2018 Application of LS-DYAN in safety product developing

Safety Technologies

Seatbelts prevent fatalities

The combination of seatbelt, seatbelt pretensioners, load limiters, lap pretensioners and frontal airbags reduces the risk of lifethreatening head or chest injuries in frontal crashes by 75%.

Airbags

In frontal crashes, driver airbags reduce fatalities by appr 25%, and front-seat airbags by appr 20%. Side-curtain airbags reduce life-threatening head injuries in side impacts by appr 50% for passengers sitting on the side of the vehicle that is struck. Side airbags, rear side airbags, knee airbags and far-side airbags also help save lives and reduce serious injuries.

Protecting Pedestrians

Thanks to a pyrotechnic hood-lifter and/or an outside pedestrian protection airbag, a pedestrian who is hit can avoid head injury caused by the hard area between the hood and the windscreen or one of the windshield pillars.

STC rmore Softwa

Autoliv

Safety Product

Airbags – Snapshot

Product Portfolio Overview

Airbags		 ✓ Driver and passenger ✓ Knee ✓ Side and curtain ✓ Far-Side ✓ Pedestrian protection
Inflators		 ✓ Pyrotechnic ✓ Stored gas ✓ Hybrid
Initiators and Micro Gas Generators		 ✓ Initiators ✓ Micro gas generators
Textiles	JAN M	 Weaving of one-piece cushions Cut & sew operations

6 October 27, 2018 Application of LS-DYAN in safety product developing

STC rmore Softwa

Autoliv

Safety Product

Seatbelts – Snapshot

Product Portfolio Overview

Retractors/ Pretensioners	 Tightens seatbelt in case of accident Stops spool that retains seatbelt webbing from rotating
Pre-Pretensioners	 Tightens seatbelt prior to crash or during aggressive driving manoeuvres Soft tightening as warning for ADAS functions
Buckles	 Can provide tightening of seatbelt during crash Illuminated and buckle presenters
Height Adjusters, Pillar Loops & Tongues, Webbing	 Accommodate diverse vehicle interior layouts and safety needs

October 27, 2018 Application of LS-DYAN in safety product developing

7

Safety Product

Steering Wheels - Snapshot

Product Portfolio Overview

Steering Wheel Products	 Leather wrap and polyurethane wheels Magnesium & aluminum die cast structures
Steering Wheel Electrical Device	 Heated rim, horn and touch switches Gesture controls Steering wheel ECUs (HOD, heat and alert)
Human Machine Interface (HMI) Features	 HMI platform, enabling ADAS features Optical sensor Hands on/ off detection (HOD) Driver alert (optical and haptic)

Solve all problems in LS-Dyna

_STC

10 October 27, 2018 Application of LS-DYAN in safety product developing

Application of LS-DYAN

Strength in Implicit and explicit of Ls-Dyna

- Material property
- Seatbelt
- Airbag
- Steering wheel

Autoliv

Strength Analysis -Seatbelt

13

The frame took place fracture when pulling force reached 20KN as similar test result of 17-19KN.

The frame took place fracture when pulling force reached 16KN as similar test result of 16-18KN.

October 27, 2018 Application of LS-DYAN in safety product developing

_STC

Strength Analysis -Airbag

15

DAB maximum setup force is about 65N when omega spring start to sliding, same with theoretic process.

Force - Displacement

Pressing Stiffness 0º / 12' clock Rigid angular bar move 80mm by low speed Force - Displan Test results Blue curve Sim Results pink curve

16 October 27, 2018 Application of LS-DYAN in safety product developing

LSTC ivermore Softwar echnology Corp.

Application of LS-DYAN

Airbag deployment in Ls-Dyna

- Coverage area
- Bag deployment
- Airbag subsystem model

Airbag deployment Coverage area

Airbag deployment Coverage area

Autoliv

 19
 October 27, 2018
 Application of LS-DYAN in safety product developing

LSTC ivermore Softwar echnology Corp.

21 October 27, 2018 Application of LS-DYAN in safety product developing

Airbag deployment IC

22 October 27, 2018 Application of LS-DYAN in safety product developing

Copyright Autoliv Inc., All Rights Reserved

Autoliv

_STC

LSTC

Airbag deployment

23 October 27, 2018 Application of LS-DYAN in safety product developing

LSTC ivermore Software echnology Corp.

2018 LS-DYNA China Forum LISTC Livermore Software Technology Corp.

Loadcase 1 : Time = 1.999951

Airbag deployment SAB

Airbag subsystem model

Copyright Autoliv Inc., All Rights Reserved

October 27, 2018 Application of LS-DYAN in safety product developing

Airbag subsystem model Validated for system

27

D3PLOT: LS-DYNA keyword deck by LS-PrePost

Autoliv

Application of LS-DYAN

Fatigue Analysis in Ls-Dyna

- Fatigue Simulation method
- Calibration Fatigue method
- Fatigue material properties
- Fatigue examples

What is fatigue?

- □ Fatigue is a process in which damage accumulates due to the repetitive application of loads that may be well below the yield point.
- □ Fatigue is a complex process involving many steps but it can be broken down into initiation and propagation of fatigue cracks.
- □ It is estimated that fatigue failures are responsible for 90% of all metallic failures.
- For many years, fatigue has been a significant and challenging problem for engineers, especially for those who design structures such as aircrafts, railroad vehicles, automotives, bridges, pressure vessels, and cranes.

Fatigue Analysis

How to run fatigue analysis?

- □ Fatigue analysis can be performed in time domain and frequency domain.
- Two frequency domain approaches based on <u>random vibration theory</u> <u>and harmonic vibration (SSD) theory</u> have been implemented in LS-DYNA for fatigue and durability analysis.
- Recently we implemented time domain fatigue, including <u>one based on</u> <u>stress</u> and <u>the other based on strain</u> (further testing and validation

needed)

S-N CUIVE (high cycle, low stress)

*MAT ADD FATIGUE

Card 1	1	2	3	4	5	6	7	8
Variable	MID	LCID	LTYPE	А	В	STHRES	SNLIMT	SNTYPE
Туре	Ι	Ι	Ι	F	F	F	Ι	Ι
Default	none	-1	0	0.0	0.0	none	0	0

- By *DEFINE CURVE ۲
- By equation

$$N \cdot S^m = a$$

 $\log(S) = a - b \cdot \log(N)$

N: number of cycles for fatigue failure S: stress

Source of information: http://www.efunda.com

Fatigue life of stress below fatigue threshold ۰

SNLIMT Fatigue life for stress lower than the lowest stress on S-N curve. EQ.0: use the life at the last point on S-N curve EQ.1: extrapolation from the last two points on S-N curve $EQ.2: infinity. \\ \label{eq:eq:explication}$ Application of LS-DYAN in safety product developing

Διιτοίι

October 27, 2018 31

Διιτοίι

S-N CUIVE (high cycle, low stress)

To define S-N curve with multiple slopes, the S-N curve can be split into multiple segments and each segment is defined by a set of parameters Ai, Bi and STHRESi. Up to 8 sets of the parameters (Ai, Bi and STHRESi) can be defined. The lower limit of the *i*-th segment is represented by the threshold stress STHRESi.

Fatigue Analysis

E-N CUIVE (low cycle, high stress)

*MAT_ADD_FATIGUE_EN

Card 1	1	2	3	4	5	6	7	8
Variable	MID	KP	NP	SIGMAP	EPSP	В	С	
Туре	Ι	F	F	F	F	F	F	
Default	none	none	none	none	none	none	none	

Cyclic stress strain curve

Local strain-life relationship

Autoliv

Application of LS-DYAN in safety product developing

Autoliv

Fatigue Analysis

Comparison of Radioss (bulk data)/nCode and LS DYNA (implicit)

35 October 27, 2018

copyright / atom inc., / in rights recorved

Autoliv

Fatigue Analysis

Comparison of Radioss (bulk data)/nCode and LS DYNA (implicit)

Random Vibration: simulation results

• The Root Mean Square (RMS) stress of the specimen is calculated by Radioss and LS-DYNA, respectively.

36 October 27, 2018

Application of LS-D LAIN III salety product developing

Fatigue Analysis

Measure the fatigue material property

Shaker-based fatigue test

Fatigue material property data base

Fatigue Analysis

Real fatigue life = 9.1E4 load cycles Estimated fatigue life = 8.67E4 load cycles

Min. Fatigue Life = 40'000 cycles < 100'000 cycles Fail!

Copyright Autoliv Inc., All Rights Reserved

38

Application of LS-DYAN

Acoustic Simulation in Ls-Dyna

- Introduce
- Application
- Steering wheel

Acoustic Simulation introduce

Time domain acoustic solver in LS-DYNA

✓ MAT_ACOUSTIC with solid element 8 or 14

Frequency domain acoustic solver in LS-DYNA

- ✓ FREQUENCY_DOMAIN_ACOUSTIC_BEM
 - o Rayleigh method
 - Kirchhoff method
 - Collocation BEM
 - Variational indirect BEM
- ✓ FREQUENCY_DOMAIN_ACOUSTIC_FEM
 - o Hexahedron
 - o Tetrahedron
 - o Pentahedron
- ✓ SEA (ongoing development)

National Taipei University of Technology, Taiwan: Guo-Ding Huang, Hsiu-Ying Hwang, Xijun Wang, "Vibration Testing and Analysis for a Midsize Electric Bus", Proceedings of the 19th National Conference on Vehicle Engineering, Nov. 14, 2014, TIIT, Jhongli, Taiwan.

BEM (accurate)

- Indirect variational boundary element method
- Collocation boundary element method
 - Burton-Miller formulation
 - Sound power and radiation efficiency are computed

They used to be time consuming A fast solver based on domain decomposition MPP version

Approximate (simplified) methods

- > Rayleigh method
- Kirchhoff method

Assumptions and simplification in formulation Very fast since no equation system to solve

STC

Autoliv

44 October 27, 2018 Application of LS-DYAN in safety product developing

Acoustic Simulation

STC

Application of LS-DYAN in safety product developing

Each year, Autoliv's products save over 30,000 lives

1111

autoliv.com

